手机浏览器扫描二维码访问
既然是这种测试,用来测试的题目肯定和应试题目有着相当大的区别。
难度,起码要比博士毕业论文的水平持平。
毕竟,这可是选拔菲涅尔教授的助手。
第一题:【假设(n,g)是一个n+1维黎曼流形,是其n维子流形,假设ψ是n上的给定光滑函数。是否存在这样的嵌入φ:→n,使得f(x)=ψ】
不仅题目少,连题干也是简短的不行。
但难度,可比外面胡扯一大堆,设情景,编故事的数学题目,完全不在同一个平面。
看到题目的第一眼,程诺就有一种感觉:这是个硬茬!
很明显,这一道黎曼流形领域的题目。
由于菲涅尔教授主攻的是几何学领域,出这道题目也算是情理之中。
何谓黎曼流形?
这是指在微分流形以及黎曼几何中,一个黎曼流形是具有黎曼度量的微分流形,换句话说,这个流形上配备有一个对称正定的二阶协变张量场,亦即在每一点的切空间上配备一个正定二次型。给了度量以后,我们就可以像初等几何学中一样,测量长度,面积,体积等量。
n维欧氏空间中有自然的度量ds2=(dx_1)2++(dx_n)2。它的矩阵表示就是单位矩阵。
欧氏空间中的子流形当然也就自然地诱导出一个度量。曲线和曲面的微分几何里,我们都是把曲线曲面视为三维空间的子流形,所以自然赋予了度量结构。
望着试卷上的题目,程诺深深沉思。
别的选手在读完题目后都在拿出手机匆匆忙忙的搜索着资料,但程诺不用这样。
一是网上根本不可能搜到正确答案,二是所有有关黎曼流形的资料,都已经印在了他的脑子里。
一周的备战时间,程诺也不是毫无准备。
一分钟,两分钟,三分钟……
脑海中,程诺思绪飞转。
一组组公式相互组合串联,渐渐形成一条完整的证明链。
十分钟后,程诺紧闭的双眸缓缓睁开。
然后,执笔开写。
这道题,程诺准备用黎曼流形的超曲面的预定曲率问题,进行求解。
【超曲面φ()在诱导度量下的主曲率为k=(k1,k2,k3……),f是一个对称的函数,特别的,如果f(k)=∑ki或者f(k)=nki】
【假设n=rn+1,当n是弯曲的黎曼流形时,存在n维黎曼流形(,dσ2)和可微函数h:i→r2,使得n=i,并且n的度量可以写成ds2=dt2+h2……】
…………
时间滴滴答答的流逝,程诺也将一行行公式写在试卷上。
思路就在脑子里,因此程诺写的无比流畅。
在外人看来,程诺就像是没有经过思考似的,一个个公式跃然纸张。
【存在一个n维流形和微分同胚,其中i=(a,b)是r的开发区间,a,b∈r……】
搞定,完美!!
激动的他下意识的打了一个响指。
然后,教室内其他几人都朝他看来,露出狐疑的目光。
程诺双手合十,待几人都转过头去后,便摇头轻轻一笑。
说实话,这道题目,如果将这道题目的阐述过程扩展成一片论文的话,去参加硕士生的毕业答辩完全不成问题。
也就是说,一个博士生半个月到一个月研究的内容,程诺用了半个多小时,就轻松搞定。
这就是硬实力。
程诺嘴角微翘,看向第二题。
冲喜娘妻续之逆袭人生by粉色的花朵免费阅读 冲喜娘妻续之逆袭人生原创番外合集 反派穿成黄文女主by(泥菩萨)未删减版 大周王侯 全能游戏设计师 冲喜娘妻续之逆袭人生原文免费读书 冲喜娘妻续之逆袭人生校对txt资源笔趣阁 念念不忘 全集 重生之国民男神 冲喜娘妻续之逆袭人生by粉色的花朵TXT百度网盘 最终猎杀 校花的透视高手 冲喜娘妻续之逆袭人生by(粉色的花朵)未删减版 反派穿成黄文女主续集免费阅读 反派穿成黄文女主by泥菩萨免费阅读 逍遥梦路 反派穿成黄文女主by泥菩萨TXT百度网盘 反派穿成黄文女主原创番外合集 反派穿成黄文女主校对txt资源笔趣阁 超级母舰
农民子弟李德胜大学落榜,得儿时老道传承,得到传承玉佩空间,医武修仙。偶救美女,得广寒玉兔之后,在世间行侠仗义,从此开启了一段轰轰烈烈的开挂人生。...
君墨染因为纵欲过度而猝死,穿越到自己看过的一本热血玄幻小说中,成为了书中大反派的贴身跟班,并且觉醒了最强跟班系统,此时,反派圣子还没有因为谭青竹走上黑化之路,为了改变自己活不过三章的命运。君墨染心中无女人,拔剑自然神,剑谱第一页,忘掉心上人。反派圣子君墨染色字头上一把刀,人从花中过,片叶...
叶皎月是以爱为食的魅魔,美貌是她与生俱来的天赋,一次意外,她与系统绑定,开始穿梭各个世界,扮演恶毒女配。从此各个位面的天之骄子们全都红着眼拜倒在了她裙下,为她痴为她狂!①带球跑文中女主的拜金室友带球跑文中的超级大BOSS男主往往都只能对女主一个人有反应,但是如果出现了第二个人呢,虽然她虚荣又拜金②年代文中嫉妒...
魔蝎小说...
苍天已死,黄天当立,岁在甲子,天下大吉!苦难,腐败,欺凌!我等小民饱经苦难,官吏腐败横行,肆意欺凌我等,我等不过是贩夫走卒,农人兵丁,家无立锥,不为大汉天子所知,对于高高在上的大汉天子,不过蝼蚁!官兵称我等为蛾贼!!!天下大旱,颗粒无收,而赋税益重,只因宦戚权贵骄奢淫欲,沉迷享乐!我等家无立锥之地...
...